Behavioural and EEG atypicalities during rest, visual perception, and cognitive control in autistic adults

crossref(2020)

引用 0|浏览0
暂无评分
摘要
Background: People with an Autism Spectrum Condition diagnosis (ASD) are hypothesized to show atypical neural dynamics, reflecting differences in neural structure and function. However, previous results regarding neural dynamics in autistic individuals have not converged on a single pattern of differences. It is possible that the differences are cognitive-set-specific, and we therefore measured EEG in autistic individuals and matched controls during three different cognitive states: resting, visual perception, and cognitive control.Methods: Young adults with and without an ASD (N=17 in each group) matched on age (range 20 to 30 years), sex, and estimated Intelligence Quotient (IQ) were recruited. We measured their behavior and their EEG during rest, a task requiring low-level visual perception of gratings of varying spatial frequency, and the “Simon task” to elicit activity in the executive control network. We computed EEG power and Inter-Site Phase Clustering (ISPC; a measure of connectivity) in various frequency bands.Results: During rest, there were no ASD vs. controls differences in EEG power, suggesting typical oscillation power at baseline. During visual processing, without pre-baseline normalization, we found decreased broadband EEG power in ASD vs. controls, but this was not the case during the cognitive control task. Furthermore, the behavioral results of the cognitive control task suggest that autistic adults were better able to ignore irrelevant stimuli.Conclusions: Together, our results defy a simple explanation of overall differences between ASD and controls, and instead suggest a more nuanced pattern of altered neural dynamics that depend on which neural networks are engaged.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要