Single cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览1
暂无评分
摘要
Lineage tracing using genetically engineered mouse models is an essential tool for investigating cell-fate decisions of progenitor cells and biology of mature cell types, with relevance to physiology and disease progression. To study disease development, an inventory of an organ’s cell types and understanding of physiologic function is paramount. Here, we performed single-cell RNA sequencing to examine heterogeneity of murine pancreatic duct cells, pancreatobiliary cells, and intrapancreatic bile duct cells. We describe an epithelial-mesenchymal transitory axis in our three pancreatic duct subpopulations and identify SPP1 as a regulator of this fate decision as well as human duct cell de-differentiation. Our results further identify functional heterogeneity within pancreatic duct subpopulations by elucidating a role for Geminin in accumulation of DNA damage in the setting of chronic pancreatitis. Our findings implicate diverse functional roles for subpopulations of pancreatic duct cells in maintenance of duct cell identity and disease progression and establish a comprehensive road map of murine pancreatic duct cell, pancreatobiliary cell, and intrapancreatic bile duct cell homeostasis.SIGNIFICANCEMurine models are extensively used for pancreatic lineage tracing experiments and investigation of pancreatic disease progression. Here, we describe the transcriptome of murine pancreatic duct cells, intrapancreatic bile duct cells, and pancreatobiliary cells at single cell resolution. Our analysis defines novel heterogeneity within the pancreatic ductal tree and supports the paradigm that more than one population of pancreatic duct cells harbors progenitor capacity. We identify and validate unique functional properties of subpopulations of pancreatic duct cells including an epithelial-mesenchymal transcriptomic axis and roles in chronic pancreatic inflammation.
更多
查看译文
关键词
single cell transcriptome analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要