Characterization of novel pollen-expressed transcripts reveals their potential roles in pollen heat stress response inArabidopsis thaliana

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 0|浏览1
暂无评分
摘要
The male gametophyte is the most heat-sensitive of all plant tissues. In recent years, long noncoding RNAs (lncRNAs) have emerged as important components of cellular regulatory networks involved in most biological processes, including response to stress. While examining RNAseq datasets of developing and germinatingArabidopsis thalianapollen exposed to heat stress (HS), we identified 66 novel and 246 recently-annotated intergenic expressed loci (XLOCs) of unknown function, with the majority encoding lncRNAs. Comparison to HS in cauline leaves and other RNAseq experiments, indicated 74% of the 312 XLOCs are pollen-specific, and at least 42% are HS-responsive. Phylogenetic analysis revealed 96% of the genes evolved recently inBrassicaceae. We found that 50 genes are putative targets of microRNAs, and that 30% of the XLOCs contain small open reading frames (ORFs) with homology to protein sequences. Finally, RNAseq of ribosome-protected RNA fragments together with predictions of periodic footprint of the ribosome P-sites indicated that 23 of these ORFs are likely to be translated. Our findings indicate that many of the 312 unknown genes might be functional, and play significant role in pollen biology, including the HS response.
更多
查看译文
关键词
pollen-expressed heat stress response,heat stress response,heat stress,transcripts
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要