Updating of existing vulnerability curves with data from recent events in the European Alps

crossref(2020)

引用 0|浏览0
暂无评分
摘要
<p>Because effects of climate change and an increase in elements at risk in many mountain areas, loss increased throughout Europe. Yet, factors influencing loss, i.e. physical vulnerability of elements at risk, have gained less attention to date. Here, vulnerability is defined as the degree of loss resulting from the hazard impact on the building envelope. Recent studies have focused on evaluating vulnerability to dynamic flooding using proxies from case studies and based on empirical ex-post approaches (Papathoma-K&#246;hle et al., 2011; Papathoma-K&#246;hle et al., 2017; Fuchs et al., 2019a). However, the transferability of resulting vulnerability functions or curves to other case studies and, therefore, the ability of such models to actually predict future losses, is limited.</p><p>Existing vulnerability curves for the expression of the physical vulnerability of buildings to dynamic flooding in the alpine space are associated with a large number of uncertainties. The updating of the existing curves with data from recent events is necessary in order to make existing curves more reliable. In the present study damage data from three torrential events in Italy (Campolongo, Province of Trento, 2010; Braies, Province of Bolzano, 2017; Rotian river creek, Province of Trento, 2018) are used to update existing curves that have been developed for similar settlement types and similar hazard events in the Austrian Alps. At first a new vulnerability curve is developed only for the new study sites and is being compared with existing vulnerability curves in the Austrian Alps. As a second step the new data are fed to the existing vulnerability models (Fuchs et al., 2019b) in order to update them. Preliminary results are presented.</p><p>&#160;</p><p>References</p><p>Fuchs, S., Keiler, M., Ortlepp, R., Schinke, R., and Papathoma-K&#246;hle, M.: Recent advances in vulnerability assessment for the built environment exposed to torrential hazards: challenges and the way forward, Journal of Hydrology, 575, 587-595, https://doi.org/10.1016/j.jhydrol.2019.05.067, 2019a.</p><p>Fuchs, S., Heiser, M., Schl&#246;gl, M., Zischg, A., Papathoma-K&#246;hle, M., and Keiler, M.: Short communication: A model to predict flood loss in mountain areas, Environmental Modelling and Software, 117, 176-180, https://doi.org/10.1016/j.envsoft.2019.03.026, 2019b.</p><p>Papathoma-K&#246;hle, M., Kappes, M., Keiler, M., and Glade, T.: Physical vulnerability assessment for alpine hazards: state of the art and future needs, Natural Hazards, 58, 645-680, https://doi.org/10.1007/s11069-010-9632-4, 2011.</p><p>Papathoma-K&#246;hle, M., Gems, B., Sturm, M., and Fuchs, S.: Matrices, curves and indicators: a review of approaches to assess physical vulnerability to debris flows, Earth-Science Reviews, 171, 272-288, https://doi.org/10.1016/j.earscirev.2017.06.007, 2017.</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要