谷歌浏览器插件
订阅小程序
在清言上使用

Guanidine hydrochloride reactivates an ancient septin hetero-oligomer assembly pathway in budding yeast

crossref(2019)

引用 0|浏览9
暂无评分
摘要
ABSTRACTSeptin proteins co-assemble into hetero-oligomers that polymerize into cytoskeletal filaments with a variety of cellular functions. InSaccharomyces cerevisiae, where septins were first discovered, five subunits comprise two species of septin hetero-octamers, Cdc11/Shs1–Cdc12–Cdc3–Cdc10– Cdc10–Cdc3–Cdc12–Cdc11/Shs1. Septins evolved from ancestral GTPases. We previously found evidence that slow GTPase activity by Cdc12 directs the choice of incorporation of Cdc11 vs Shs1 into septin complexes. It was unclear why many septins, including Cdc3, lack GTPase activity. We serendipitously discovered that the small molecule guanidine hydrochloride (GdnHCl) rescues septin function incdc10mutants by promoting assembly of non-native Cdc11/Shs1–Cdc12–Cdc3– Cdc3–Cdc12–Cdc11/Shs1 hexamers. We provide evidence that inS. cerevisiaeCdc3 guanidinium ion (Gdm) occupies the site of a “missing” Arg sidechain that is present in other fungal species in which (i) the Cdc3 subunit is an active GTPase and (ii) Cdc10-less hexamers co-exist with octamers in wild-type cells. These findings support a model in which Gdm reactivates a latent septin assembly pathway that was suppressed during fungal evolution in order to restrict assembly to hetero-octamers. Given that septin hexamers made natively in human cells also exclude Cdc10-like central subunits via homodimerization of an active GTPase, our results provide new mechanistic details that likely apply to septin assembly throughout phylogeny.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要