Advances in transdermal siRNAs delivery: A review of current research progress

Non-coding RNA Research(2023)

引用 1|浏览7
暂无评分
摘要
Small interfering RNA (siRNAs) is a double-stranded RNA molecule which can hybridize with a specific mRNA sequence and block the translation of numerous genes to regulate endogenous genes and to defend the genome from invasive nucleic acids. The use of siRNAs has been studied as a treatment option for various skin conditions. One of the main obstacles in the dermal or transdermal delivery of this compound is low skin permeability, and application is limited by its negative charge, high polarity, susceptibility to degradation by nucleases, and difficulty in penetrating the skin barrier. Effective delivery of therapeutic biomolecules to their target is a challenging issue, which can be solved by innovations in drug delivery systems and lead to improvement of the efficiency of many new biopharmaceuticals. Designing of novel transdermal delivery systems garnered tremendous attention in both cosmeceutical and pharmaceutical research and industries, which offers a number of advantages. Developing safe and efficient siRNAs delivery vectors is essential for effective treatment of skin diseases. In recent years, significant progress has been made in the creation of delivery systems using lipids, polymers, cell-penetrating peptides, nanoparticles and other biologically active agents. In this review we will focus on the recent advancements in transdermal siRNAs delivery vectors, such as liposomes, dendrimers, cell-penetrating peptides, and spherical nucleic acid nanoparticles.
更多
查看译文
关键词
RNA interference,Small interfering RNA,Delivery vector,Skin diseases,Lipidosome,Polymers,Nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要