Protection Mehcanism Against Drought In Axsonopus Compressus: Insight of Physio-Biochemical Traits, Antioxident Interplay and Gene Experssion

crossref(2020)

引用 0|浏览3
暂无评分
摘要
Abstract Drought is a major environmental constraint that affects plant growth and internal physio-biochemical features. The present study was conducted to evaluate the performance of three different Axonopus compressus accessions, i.e., A-38, A-58, and A-59 under well-watered (WW), low drought (LD), moderate (MD) and severe drought (SD) conditions at field capacity of 100, 80, 60, and 40%, respectively. Results indicated that drought-induced higher production of proline and soluble sugar (SS) up to 40 and 41% respectively, than control. Drought stress caused excessive production of H 2 O 2 while the highest value (10.15µmol g -1 FW) was observed in the A-38 under SD. However, the lowest enzymatic (SOD, POD, CAT, and APX) activity were observed in A-38 than A-58 and A-59 respectively, in the SD. In A-58 the efficient enzymatic and nonenzymatic defense systems hinder the severe damage while stunted growth occurred in Axonopus compressus accessions at SD which were more pronounced in the A-38. Overall, the performance of all Axonopus compressus accessions under drought stress was recorded as A-58>A-59>A-38. The qRT PCR expression analysis also revealed highest expression of drought responsive genes in A-58 and reinforced the findings of physiological data. These results suggested the plant's ability to maintain its functions during drought induction could be used for further investigation under scarce water for developing drought tolerance.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要