谷歌浏览器插件
订阅小程序
在清言上使用

Numerical Simulation of Condensation Heat Transfer Characteristics of R134a at High Vapor Velocity under Different Angles

International Journal of Heat and Mass Transfer/International journal of heat and mass transfer(2023)

引用 0|浏览8
暂无评分
摘要
Heat pipe is widely used as an efficient built-in heat exchanger for thermal management of high pulse and heat flux power supplies. Enhanced heat dissipation at the condensing side is an important issue in heat pipe research, where vapor velocity is an essential factor affecting the condensing heat transfer characteristics. This study adopted the CFD method to numerically simulate the condensation heat transfer of R134a flowing in a smooth pipe. The flow condensation heat transfer characteristics, such as film thickness and heat transfer coefficient (HTC), were investigated under vapor velocities v = 20-100 m/s and tube inclinations beta = -90-90 degrees Geometric and numerical heat transfer modeling is established in high vapor velocity flow condensation. The error of numerical simulation results and model validation is 10%. The HTC increases rapidly with the change in vapor velocity under 60 m/s, increasing the rate to 0.4. When the vapor velocity exceeds 60 m/s, the growth trend slows to 0.15, 37.5% of the original increase. At high vapor velocities above 60 m/s, the effect of pipe inclination on condensation heat transfer coefficient can be almost negligible. A modified empirical correlation suitable for high vapor velocities is proposed, which has higher predictive accuracy when the vapor velocity exceeds 80 m/s.(c) 2023 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Flow condensation,High vapor velocity,CFD simulation,Heat transfer coefficient,Modified empirical correlation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要