Proteomics and phosphoproteomics analysis identifies liver immune protein markers in large yellow croakers (Larimichthys crocea) fed a soybean oil-based diet

International Journal of Biological Macromolecules(2023)

引用 0|浏览1
暂无评分
摘要
Dietary fish oil (FO) replacement has led to an inflammatory response in fish species. This study aimed to identify immune-related proteins in the liver tissue of fish fed a FO-based or soybean oil (SO)-based diet. By conducting proteomics and phosphoproteomics analyses, a total of 1601 differentially expressed proteins (DEPs) and 460 differentially abundant phosphorylated proteins (DAPs) were identified, respectively. Enrichment analysis revealed immune-related proteins involved in bacterial infection, pathogen identification, cytokine production, and cell chemotaxis. The mitogen-activated protein kinase (MAPK) pathway exhibited significant alterations in both protein and phosphorylation levels, with several hub DEPs and DAPs associated with MAPK pathway and leukocyte transendothelial migration being notable. In vitro experiments indicated that linolenic acid (LNA), derived from SO, inhibited the expression of NF-E2-related factor 2 (Nrf2), but increased the expression of signaling proteins linked to nuclear factor κB (NF-κB) and MAPK pathways. Transwell assays indicated that treatment of liver cells with LNA promoted macrophage migration. Collectively, the results showed that the SO-based diet upregulated the expression of NF-κB signaling-related proteins and activated the MAPK pathway, promoting immune cell migration. These findings provide novel insights for developing effective solutions to alleviate health problems caused by dietary high levels of SO inclusion.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要