A critical role of the T3SS effector EseJ in intracellular trafficking and replication ofEdwardsiella piscicidain non-phagocytic cells

crossref(2018)

引用 0|浏览0
暂无评分
摘要
AbstractEdwardsiella piscicida(E. piscicida) is an intracellular pathogen within a broad spectrum of hosts. Essential toE. piscicidavirulence is its ability to survive and replicate inside host cells, yet the underlying mechanisms and the nature of the replicative compartment remain unclear. Here, we characterized its intracellular lifestyle in non-phagocytic cells and showed that intracellular replication ofE. piscicidain non-phagocytic cells is dependent on its type III secretion system. Following internalization,E. piscicidais contained in vacuoles that transiently mature into early endosomes, but subsequently bypasses the classical endosome pathway and fusion with lysosomes which depends on its T3SS. Following a rapid escape from the degradative pathway,E. piscicidawas found to create a specialized replication-permissive niche characterized by endoplasmic reticulum (ER) markers. We also found that a T3SS effector EseJ is responsible for intracellular replication ofE. piscicidaby preventing endosome/lysosome fusion. Furthermore,in vivoexperiments confirmed that EseJ is necessary for bacterial colonization ofE. piscicidain both mice and zebrafish. Thus, this work elucidates the strategies used byE. piscicidato survive and proliferate within host non-phagocytic cells.Author summaryE. piscicidais a facultative intracellular bacterium associated with septicemia and fatal infections in many animals, including fish and humans. However, little is known about its intracellular life, which is important for successful invasion of the host. The present study is the first comprehensive characterization ofE. piscicida’s intracellular life-style in host cells. Upon internalization,E. piscicidais transiently contained in Rab5-positive vacuoles, but the pathogen prevents further endosome maturation and fusion with lysosomes by utilizing an T3SS effector EseJ. In addition, the bacterium creates an specialized replication niche for rapid growth via an interaction with the ER. Our study provides new insights into the strategies used byE. piscicidato successfully establishes an intracellular lifestyle that contributes to its survival and dissemination during infection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要