Urbanization reduces soil microbial network complexity and stability in the megacity of Shanghai

Lan Liu, Zhaochen Zhang,Xin Wang, Ran Zhang,Meng Wang, Nina Wurzburger,Junxiang Li,Jian Zhang

Science of The Total Environment(2023)

引用 1|浏览10
暂无评分
摘要
Urbanization is altering the co-occurrence networks of ecological communities that are critical to maintaining ecosystem functions and services. Soil microbial communities play key roles in various ecosystem processes, but how soil microbial co-occurrence networks respond to urbanization is unclear. Here we analyzed co-occurrence networks in soil archaeal, bacterial, and fungal communities from 258 soil sampling sites across the megacity of Shanghai along large urbanization gradients. We found that topological features of microbial co-occurrence networks were strongly altered by urbanization. In particular, microbial communities in more urbanized land-use and highly impervious land cover had less connected and more isolated network structures. These structural variations were accompanied by the dominance of connectors and module hubs affiliated with the Ascomycota in fungi and Chloroflexi in bacteria, and there were greater losses in efficiency and connectivity in urbanized than in remnant land-use in simulated disturbances. Furthermore, even though soil properties (especially soil pH and organic carbon) were major factors shaping topological features of the microbial networks, urbanization still uniquely explained a proportion of the variability, particularly those describing network connections. These results demonstrate that urbanization has clear direct and indirect effects on microbial networks and provide novel insights into how urbanization alters soil microbial communities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要