A One-Step Self-Flowering Method toward Programmable Ultrathin Porous Carbon-Based Materials for Microwave Absorption and Hydrogen Evolution.

Small (Weinheim an der Bergstrasse, Germany)(2023)

引用 2|浏览4
暂无评分
摘要
Ultrathin 2D porous carbon-based materials offer numerous fascinating electrical, catalytic, and mechanical properties, which hold great promise in various applications. However, it remains a formidable challenge to fabricate these materials with tunable morphology and composition by a simple synthesis strategy. Here, a facile one-step self-flowering method without purification and harsh conditions is reported for large-scale fabrication of high-quality ultrathin (≈1.5 nm) N-doped porous carbon nanosheets (NPC) and their composites. It is demonstrated that the layered tannic/oxamide (TA/oxamide) hybrid is spontaneously blown, exfoliated, bloomed, in situ pore-formed, and aromatized during pyrolysis to form flower-like aggregated NPC. This universal one-step self-flowering system is compatible with various precursors to construct multiscale NPC-based composites (Ru@NPC, ZnO@NPC, MoS @NPC, Co@NPC, rGO@NPC, etc.). Notably, the programmable architecture enables NPC-based materials with excellent multifunctional performances, such as microwave absorption and hydrogen evolution. This work provides a facile, universal, scalable, and eco-friendly avenue to fabricate functional ultrathin porous carbon-based materials with programmability.
更多
查看译文
关键词
hydrogen evolution, microwave absorption, one-step self-flowering, programmability, ultrathin 2D porous materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要