Adsorption of lead ions by activated carbon doped sodium alginate/sodium polyacrylate hydrogel beads and their in-situ recycle as sustainable photocatalysts.

Journal of colloid and interface science(2023)

引用 0|浏览4
暂无评分
摘要
In this study, sodium alginate (SA), sodium polyacrylate (PAAS) and powdered activated carbon (PAC) were cross-linked by calcium ions [(Ca(II)] to form SA/PAAS/PAC (SPP) hydrogel beads. The hydrogel-lead sulfide (SPP-PbS) nanocomposites were successfully synthesized by in-situ vulcanization after the lead ions [(Pb(II)] adsorption. SPP showed an optimal swelling ratio (600% at the pH value of 5.0) and superior thermal stability (206 °C of heat-resistance index). The adsorption data of Pb(II) was compatible with the Langmuir model, and the maximum adsorption capacity of SPP was 391.65 mg/g after optimizing the mass ratio of SA to PAAS (3:1). The addition of PAC not only enhanced the adsorption capacity and stability, but also promoted photodegradation. The significant dispersive capacity of PAC and PAAS resulted in PbS nanoparticles with particle sizes of around 20 nm. SPP-PbS showed good photocatalysis and reusability. The degradation rate of RhB (200 mL, 10 mg/L) was 94% within 2 h and maintained above 80% after 5 cycles. The treatment efficiency of SPP was more than 80% in actual surface water. The results of quenching experiments and electron spin resonance (ESR) experiments revealed that the superoxide radicals (O2-) and holes (h+) were the main active species in the photocatalytic process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要