High-precision method for simultaneously measuring the six-degree-of-freedom relative position and pose deformation of satellites.

Optics express(2023)

引用 1|浏览8
暂无评分
摘要
The high-precision measurement of the six degrees-of-freedom (6DoF) relative position and pose deformation of satellites on the ground in vacuum and high-/low-temperature environments plays a critical role in ensuring the on-orbit mapping accuracy of satellites. To meet the strict measurement requirements for a satellite of a high accuracy, high stability, and a miniaturized measurement system, this paper proposes a laser measurement method for simultaneously measuring 6DoF relative position and attitude. In particular, a miniaturized measurement system was developed and a measurement model was established. The problem of error crosstalk between the 6DoF relative position and pose measurements was solved by conducting a theoretical analysis and OpticStudio software simulation, and the measurement accuracy was improved. Laboratory experiments and field tests were then conducted. The experimental results revealed that the measurement accuracy of the developed system for the relative position and relative attitude reached 0.2 µm and 0.4", within the measurement ranges of 500 mm along the X axis, ±100 µm along Y and Z axes, and ±100", and the 24-h measurement stabilities were superior to 0.5 µm and 0.5", respectively, which meets the ground measurement requirements for the satellite. The developed system was successfully applied on site, and the 6Dof relative position and pose deformation of the satellite were obtained via a thermal load test. This novel measurement method and system provides an experimental means for satellite development, in addition to a method for the high-precision measurement of the relative 6DoF position and pose between two points.
更多
查看译文
关键词
relative position,satellites,deformation,high-precision,six-degree-of-freedom
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要