Characterization of solid and liquid carbonization products of polyvinyl chloride (PVC) and investigation of the PVC-derived adsorbent for the removal of organic compounds from water.

Journal of hazardous materials(2023)

引用 1|浏览2
暂无评分
摘要
The transformation of plastic wastes into value-added carbon materials is a promising strategy for the recycling of plastics. Commonly used polyvinyl chloride (PVC) plastics are converted into microporous carbonaceous materials using KOH as an activator via simultaneous carbonization and activation for the first time. The optimized spongy microporous carbon material has a surface area of 2093 m2 g-1 and a total pore volume of 1.12 cm3 g-1, and aliphatic hydrocarbons and alcohols are yielded as the carbonization by-products. The PVC-derived carbon materials exhibit outstanding adsorption performance for removing tetracycline from water, and the maximum adsorption capacity reaches 1480 mg g-1. The kinetic and isotherm patterns for tetracycline adsorption follow the pseudo-second-order and Freundlich models, respectively. Adsorption mechanism investigation indicates that pore filling and hydrogen bond interaction are mainly responsible for the adsorption. This study provides a facile and environmentally friendly approach for valorizing PVC into adsorbents for wastewater treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要