Cytotoxicity and Microbiological Properties of Copolymers Comprising Quaternary Ammonium Urethane-Dimethacrylates with Bisphenol A Glycerolate Dimethacrylate and Triethylene Glycol Dimethacrylate.

Materials (Basel, Switzerland)(2023)

引用 1|浏览10
暂无评分
摘要
Using dental composite restorative materials with a copolymeric matrix chemically modified towards bioactive properties can help fight secondary caries. In this study, copolymers of 40 wt.% bisphenol A glycerolate dimethacrylate, 40 wt.% quaternary ammonium urethane-dimethacrylates (QAUDMA-m, where m represents 8, 10, 12, 14, 16 and 18 carbon atoms in the N-alkyl substituent), and 20 wt.% triethylene glycol dimethacrylate (BG:QAm:TEGs) were tested for (i) cytotoxicity on the L929 mouse fibroblast cell line; (ii) fungal adhesion, fungal growth inhibition zone, and fungicidal activity against ; and (iii) bactericidal activity against and . BG:QAm:TEGs had no cytotoxic effects on L929 mouse fibroblasts because the reduction of cell viability was less than 30% compared to the control. BG:QAm:TEGs also showed antifungal activity. The number of fungal colonies on their surfaces depended on the water contact angle (WCA). The higher the WCA, the greater the scale of fungal adhesion. The fungal growth inhibition zone depended on the concentration of QA groups (). The lower the , the lower the inhibition zone. In addition, 25 mg/mL BG:QAm:TEGs suspensions in culture media showed fungicidal and bactericidal effects. In conclusion, BG:QAm:TEGs can be recognized as antimicrobial biomaterials with negligible biological patient risk.
更多
查看译文
关键词
quaternary ammonium compounds, composite dental resin, cytotoxicity test, antifungal agents, antibacterial agents
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要