Long-term transformation of nanoscale zero-valent iron explains its biological effects in anaerobic digestion: From ferroptosis-like death to magnetite-enhanced direct electron transfer networks.

Water research(2023)

引用 5|浏览5
暂无评分
摘要
Nanoscale zero-valent iron (nZVI) has been extensively used for environmental remediation and wastewater treatment. However, the biological effects of nZVI remain unclear, which is no doubt a result of the complexity of iron species and the dynamic succession of microbial community during nZVI aging. Here, the aging effects of nZVI on methanogenesis in anaerobic digestion (AD) were consecutively investigated, with an emphasis on deciphering the causal relationships between nZVI aging process and its biological effects. The addition of nZVI in AD led to ferroptosis-like death with hallmarks of iron-dependent lipid peroxidation and glutathione (GSH) depletion, which inhibited CH production during the first 12 days of exposure. With prolonged exposure time, a gradual recovery (12-21 days) and even better performance (21-27 days) in AD were observed. The recovery performance of AD was mainly attributed to nZVI-enhanced membrane rigidity via forming siderite and vivianite on the outer surface of cells, protecting anaerobes against nZVI-induced toxicity. At the end of 27-days exposure, the significantly increased amount of conductive magnetite simulated direct interspecies electron transfer among syntrophic partners, improving CH production. Metagenomic analysis further revealed that microbial cells gradually adapted to the aging of nZVI by upregulating functional genes related to chemotaxis, flagella, conductive pili and riboflavin biosynthesis, in which electron transfer networks likely thrived and the cooperative behaviors between consortium members were promoted. These results unveiled the significance of nZVI aging on its biological effects toward multiple microbial communities and provided fundamental insights into the long-term fates and risks of nZVI for in situ applications.
更多
查看译文
关键词
Nanoscale zero-valent iron, Aging products, Methanogenesis, Ferroptosis-like death, Electron transfer networks, Dynamic responses
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要