谷歌浏览器插件
订阅小程序
在清言上使用

Rational Synthesis of Au-CdS Composite Photocatalysts for Broad-Spectrum Photocatalytic Hydrogen Evolution.

ACS nano(2023)

引用 8|浏览7
暂无评分
摘要
Incorporation of plasmonic metal nanomaterials can significantly enhance the visible light response of semiconductor photocatalysts via localized surface plasmon resonance (LSPR) mechanisms. However, the surfaces of plasmonic metal nanomaterials are often covered with surfactant molecules, which is undesired when the nanomaterials are used for photocatalytic hydrogen evolution, since surfactant molecules could significantly compromise the nanomaterials' cocatalyst functionalities by blocking the active sites and/or by inhibiting the surface charge transfer process. Herein, we demonstrate a method that assembles Au nanoparticles (NPs) into Au colloidosomes (AuCSs) without modifying their surfaces with surfactants. The resulting AuCSs were then coupled with CdS for the formation of Au-CdS composite photocatalysts through an in situ deposition method. The assembly of Au NPs induced a broader and stronger LSPR response for AuCSs, while the absence of surfactants allowed them to act efficiently as cocatalysts. This essentially enhanced the electron-hole pair generation rate and further their utilization efficiency, leading to an extremely high hydrogen evolution rate of 235.8 mmol·g-1·h-1 under simulated sunlight excitation.
更多
查看译文
关键词
localized surface plasmon resonance,photocatalysis,hydrogen evolution,electromagnetic field,plasmonic metals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要