Chasing iron bioavailability in the Southern Ocean: Insights from Phaeocystis antarctica and iron speciation.

Science advances(2023)

引用 0|浏览16
暂无评分
摘要
Dissolved iron (dFe) availability limits the uptake of atmospheric CO by the Southern Ocean (SO) biological pump. Hence, any change in bioavailable dFe in this region can directly influence climate. On the basis of Fe uptake experiments with , we show that the range of dFe bioavailability in natural samples is wider (<1 to ~200% compared to free inorganic Fe') than previously thought, with higher bioavailability found near glacial sources. The degree of bioavailability varied regardless of in situ dFe concentration and depth, challenging the consensus that sole dFe concentrations can be used to predict Fe uptake in modeling studies. Further, our data suggest a disproportionately major role of biologically mediated ligands and encourage revisiting the role of humic substances in influencing marine Fe biogeochemical cycling in the SO. Last, we describe a linkage between in situ dFe bioavailability and isotopic signatures that, we anticipate, will stimulate future research.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要