Systematic study on lysozyme-hyaluronan complexes: Multi-spectroscopic characterization and molecular dynamics simulation.

International journal of biological macromolecules(2023)

引用 1|浏览5
暂无评分
摘要
This study systematically investigated the complexation mechanism of lysozyme (LYS) and hyaluronan (HA) as well as their complex-formation process using multi-spectroscopy combined with molecular dynamics simulation. Overall, the results demonstrated that electrostatic interaction provides the primary self-assembly driving forces for LYS-HA complex formation. Circular dichroism spectroscopy revealed that the LYS-HA complexes formation primarily alters the α-helix and β-sheet structures of LYS. Fluorescence spectroscopy yielded an entropy of 0.12 kJ/mol·K and enthalpy of -44.46 kJ/mol for LYS-HA complexes. Molecular dynamics simulation indicated that the amino acid residues of ARG114 in LYS and 4ZB4 in HA contributed most significantly. HT-29 and HCT-116 cell experiments demonstrated that LYS-HA complexes possess excellent biocompatibility. Furthermore, LYS-HA complexes were found to be potentially useful the efficient encapsulation of several insoluble drugs and bioactives. These findings provide new insight into the binding mechanism between LYS and HA, and prove indispensable to promoting the potential application of LYS-HA complexes as bioactive compound delivery systems, emulsion stabilizers, or foaming agents in the food industry.
更多
查看译文
关键词
complexes,lysozyme-hyaluronan,multi-spectroscopic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要