Sialylation of EGFR by ST6GAL1 induces receptor activation and modulates trafficking dynamics

JOURNAL OF BIOLOGICAL CHEMISTRY(2023)

引用 2|浏览8
暂无评分
摘要
Aberrant glycosylation is a hallmark of a cancer cell. One prevalent alteration is an enrichment in alpha 2,6-linked sialylation of N-glycosylated proteins, a modification directed by the ST6GAL1 sialyltransferase. ST6GAL1 is upregulated in many malignancies including ovarian cancer. Prior studies have shown that the addition of alpha 2,6 sialic acid to the epidermal growth factor receptor (EGFR) activates this receptor, although the mechanism was largely unknown. To investigate the role of ST6GAL1 in EGFR activation, ST6GAL1 was overexpressed in the OV4 ovarian cancer line, which lacks endogenous ST6GAL1, or knocked-down in the OVCAR-3 and OVCAR-5 ovarian cancer lines, which have robust ST6GAL1 expression. Cells with high expression of ST6GAL1 displayed increased activation of EGFR and its downstream signaling targets, AKT and NF kappa B. Using biochemical and microscopy approaches, including total internal reflection fluorescence microscopy, we determined that the alpha 2,6 sialylation of EGFR promoted its dimerization and higher order oligomerization. Additionally, ST6GAL1 activity was found to modulate EGFR trafficking dynamics following EGF-induced receptor activation. Specifically, EGFR sialylation enhanced receptor recycling to the cell surface following activation while simultaneously inhibiting lysosomal degradation. 3D widefield deconvolution microscopy confirmed that in cells with high ST6GAL1 expression, EGFR exhibited greater colocalization with Rab11 recycling endosomes and reduced colocalization with LAMP1-positive lysosomes. Collectively, our findings highlight a novel mechanism by which alpha 2,6 sialylation promotes EGFR signaling by facilitating receptor oligomerization and recycling.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要