谷歌浏览器插件
订阅小程序
在清言上使用

Single-step Fabrication of Hybrid Germanium-Gold/silver Nanoentities by Femtosecond Laser Ablation and Applications in SERS-based Sensing.

NANOTECHNOLOGY(2023)

引用 0|浏览6
暂无评分
摘要
We present a simple, fast, and single-step approach for fabricating hybrid semiconductor-metal nanoentities through liquid-assisted ultrafast (∼50 fs, 1 kHz, 800 nm) laser ablation. Femtosecond (fs) ablation of Germanium (Ge) substrate was executed in (i) distilled water (ii) silver nitrate (AgNO3-3, 5, 10 mM) (iii) Chloroauric acid (HAuCl4-3, 5, 10 mM), yielding the formation of pure Ge, hybrid Ge-silver (Ag), Ge-gold (Au) nanostructures (NSs) and nanoparticles (NPs). The morphological features and corresponding elemental compositions of Ge, Ge-Ag, and Ge-Au NSs/NPs have been conscientiously studied using different characterization techniques. Most importantly, the deposition of Ag/Au NPs on the Ge substrate and their size variation were thoroughly investigated by changing the precursor concentration. By increasing the precursor concentration (from 3 mM to 10 mM), the deposited Au NPs and Ag NPs' size on the Ge nanostructured surface was increased from ∼46 nm to ∼100 nm and from ∼43 nm to ∼70 nm, respectively. Subsequently, the as-fabricated hybrid (Ge-Au/Ge-Ag) NSs were effectively utilized to detect diverse hazardous molecules (e.g. picric acid and thiram) via the technique of surface-enhanced Raman scattering (SERS). Our findings revealed that the hybrid SERS substrates achieved at 5 mM precursor concentration of Ag (denoted as Ge-5Ag) and Au (denoted as Ge-5Au) had demonstrated superior sensitivity with the enhancement factors of ∼2.5 × 104, 1.38 × 104(for PA), and ∼9.7 × 105and 9.2 × 104(for thiram), respectively. Interestingly, the Ge-5Ag substrate has exhibited ∼10.5 times higher SERS signals than the Ge-5Au substrate.
更多
查看译文
关键词
Laser Ablation,Gold Nanoparticles,Metal Nanoparticles,Nanofabrication,Nanoscale Optical Devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要