Three-Dimensional Ultrastructure of the Normal Rod Photoreceptor Synapse and Degenerative Changes Induced by Retinal Detachment

JOURNAL OF NEUROSCIENCE(2023)

引用 1|浏览11
暂无评分
摘要
The rod photoreceptor synapse is the first synapse of dim-light vision and one of the most complex in the mammalian CNS. The components of its unique structure, a presynaptic ribbon and a single synaptic invagination enclosing several postsynaptic processes, have been identified, but disagreements about their organization remain. Here, we have used EM tomography to generate high-resolution images of 3-D volumes of the rod synapse from the female domestic cat. We have resolved the synaptic ribbon as a single structure, with a single arciform density, indicating the presence of one long site of transmitter release. The organization of the postsynaptic processes, which has been difficult to resolve with past methods, appears as a tetrad arrangement of two horizontal cell and two rod bipolar cell processes. Retinal detachment severely disrupts this organization. After 7 d, EM tomography reveals withdrawal of rod bipolar dendrites from most spherules; fragmentation of synaptic ribbons, which lose their tight association with the presynaptic membrane; and loss of the highly branched telodendria of the horizontal cell axon terminals. After detachment, the hilus, the opening through which postsynaptic processes enter the invagination, enlarges, exposing the normally sequestered environment within the invagination to the extracellular space of the outer plexiform layer. Our use of EM tomography provides the most accurate description to date of the complex rod synapse and details changes it undergoes during outer segment degeneration. These changes would be expected to disrupt the flow of information in the rod pathway.
更多
查看译文
关键词
electron microscope tomography,photoreceptor,retinal detachment,rod degeneration,rod spherule,synapse
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要