Ultrafast lattice disordering can be accelerated by electronic collisional forces

Nature Physics(2023)

引用 0|浏览19
暂无评分
摘要
In the prevalent picture of ultrafast structural phase transitions, atomic motion occurs in a slowly varying potential energy surface adiabatically determined by fast electrons. However, this ignores non-conservative forces caused by electron–lattice collisions, which can substantially influence atomic motion. Most ultrafast techniques only probe the average structure and are less sensitive to random displacements and therefore do not detect the role played by non-conservative forces in phase transitions. Here we show that the lattice dynamics of the prototypical insulator–metal transition of vanadium dioxide cannot be described by potential energy alone. We use the sample temperature to control the preexisting lattice disorder before ultrafast photoexcitation across the phase transition and our ultrafast diffuse scattering experiments show that the fluctuations characteristic of rutile metal develop equally fast (120 fs) at initial temperatures of 100 and 300 K. This indicates that additional non-conservative forces are responsible for the increased lattice disorder. These results highlight the need for more sophisticated descriptions of ultrafast phenomena beyond the Born–Oppenheimer approximation as well as ultrafast probes of spatial fluctuations beyond the average unit cell measured by diffraction.
更多
查看译文
关键词
Electronic properties and materials,Structure of solids and liquids,Physics,general,Theoretical,Mathematical and Computational Physics,Classical and Continuum Physics,Atomic,Molecular,Optical and Plasma Physics,Condensed Matter Physics,Complex Systems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要