Chrome Extension
WeChat Mini Program
Use on ChatGLM

基于APCS-MLR和PMF模型的海州湾沉积物重金属污染特征与来源研究

Marine Environmental Science(2023)

南京信息工程大学 | 江苏省环境监测中心

Cited 0|Views6
Abstract
沿海地区经济的快速发展导致污染物排放量不断增大,对近岸海域生态环境造成一定威胁.其中,重金属是主要污染物之一.本文采用富集系数法与潜在生态风险指数法对海州湾沉积物柱状样中重金属元素(V、Cr、Mn、Ni、Zn、Sr和Pb)进行污染生态风险评估,运用多变量分析方法(相关性分析和因子分析)、APCS-MLR和PMF模型定性、定量解析重金属污染来源.结果表明:海州湾沉积物柱状样中重金属含量普遍高于背景值,且其在1980年以前变化不大,1980年以后呈上升趋势,这与1980年以后连云港的工业经济迅速发展有关.海州湾沉积物柱状样中重金属属于轻度-中度富集水平和低潜在生态风险水平.多变量分析结果表明,V、Mn、Zn和Sr主要来源于农业源与自然源的混合源;Cr和Ni主要由工业源控制;Pb以交通源为主.APCS-MLR与PMF模型分析结果与多变量分析结果基本一致.结果表明,APCS-MLR模型和PMF模型中,农业源与 自然源的混合源、工业源、交通源对重金属污染的贡献率分别是39.81%和45.75%、48.49%和35.08%、11.67%和19.17%,该研究结果可以为海州湾重金属污染防治提供重要依据.
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest