Hypergraph-Based Fast Distributed AC Power Flow Optimization

2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC(2023)

引用 0|浏览0
暂无评分
摘要
This paper presents a novel distributed approach for solving AC power flow (PF) problems. The optimization problem is reformulated into a distributed form using a communication structure corresponding to a hypergraph, by which complex relationships between subgrids can be expressed as hyperedges. Then, a hypergraph-based distributed sequential quadratic programming (HDSQP) approach is proposed to handle the reformulated problems, and the hypergraph-based distributed quadratic optimization algorithm (HDQ) is used as the inner algorithm to solve the corresponding QP subproblems, which are respectively condensed using Schur complements with respect to coupling variables defined by hyperedges. Furthermore, we rigorously establish the convergence guarantee of the proposed algorithm with a locally quadratic rate and the one-step convergence of the inner algorithm when using the Levenberg-Marquardt regularization. Our analysis also demonstrates that the computational complexity of the proposed algorithm is much lower than the state-of-art distributed algorithm. We implement the proposed algorithm in an open-source toolbox, rapidPF(1), and conduct numerical tests that validate the proof and demonstrate the great potential of the proposed distributed algorithm in terms of communication effort and computational speed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要