Regional Lung Perfusion Using Different Indicators in Electrical Impedance Tomography

JOURNAL OF APPLIED PHYSIOLOGY(2023)

引用 0|浏览19
暂无评分
摘要
Management of acute respiratory distress syndrome (ARDS) is classically guided by protecting the injured lung and mitigating damage from mechanical ventilation. Yet the natural history of ARDS is also dictated by disruption in lung perfusion. Unfortunately, diagnosis and treatment are hampered by the lack of bedside perfusion monitoring. Electrical impedance tomography is a portable imaging technique that can estimate regional lung perfusion in experimental settings from the kinetic analysis of a bolus of an indicator with high conductivity. Hypertonic sodium chloride has been the standard indicator. However, hypertonic sodium chloride is often inaccessible in the hospital, limiting practical adoption. We investigated whether regional lung perfusion measured using electrical impedance tomography is comparable between indicators. Using a swine lung injury model, we determined regional lung perfusion (% of total perfusion) in five pigs, comparing 12% sodium chloride to 8.4% sodium bicarbonate across stages of lung injury and experimental conditions (body position, positive end-expiratory pressure). Regional lung perfusion for four lung regions was determined from maximum slope analysis of the indicator-based impedance signal. Estimates of regional lung perfusion between indicators were compared in the lung overall and within four lung regions. Regional lung perfusion estimated with a sodium bicarbonate indicator agreed with a hypertonic sodium chloride indicator overall (mean bias 0%, limits of agreement -8.43%, 8.43%) and within lung quadrants. The difference in regional lung perfusion between indicators did not change across experimental conditions. Sodium bicarbonate may be a comparable indicator to estimate regional lung perfusion using electrical impedance tomography.
更多
查看译文
关键词
acute respiratory distress syndrome,pulmonary blood flow,electrical impedance tomography
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要