CRISPR/Cas9-based double strand oligonucleotide insertion strategy corrects metabolic abnormalities in murine glycogen storage disease type Ia.

Ananya Samanta, Nelson George,Irina Arnaoutova,Hung-Dar Chen,Brian C Mansfield, Christopher Hart, Troy Carlo,Janice Y Chou

Journal of inherited metabolic disease(2023)

引用 0|浏览5
暂无评分
摘要
Glycogen storage disease type-Ia (GSD-Ia), characterized by impaired blood glucose homeostasis, is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α or G6PC). Using the G6pc-R83C mouse model of GSD-Ia, we explored a CRISPR/Cas9-based double-strand DNA oligonucleotide (dsODN) insertional strategy that uses the non-homologous end joining repair mechanism to correct the pathogenic p.R83C variant in G6pc exon-2. The strategy is based on the insertion of a short dsODN into G6pc exon-2 to disrupt the native exon, and to introduce an additional splice acceptor site and the correcting sequence. When transcribed and spliced the edited gene would generate a wild-type mRNA encoding the native G6Pase-α protein. The editing reagents formulated in lipid nanoparticles (LNP) were delivered to the liver. Mice were treated either with one dose of LNP-dsODN at age 4 weeks or with 2 doses of LNP-dsODN at age 2 and 4 weeks. The G6pc-R83C mice receiving successful editing expressed ~4% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, lacked hypoglycemic seizures, and displayed normalized blood metabolite profile. The outcomes are consistent with preclinical studies supporting previous gene augmentation therapy which is currently in clinical trials. This editing strategy may offer the basis for a therapeutic approach with an earlier clinical intervention than gene augmentation, with the additional benefit of a potentially permanent correction of the GSD-Ia phenotype. This article is protected by copyright. All rights reserved.
更多
查看译文
关键词
oligonucleotide insertion strategy,<scp>crispr/cas9</scp>‐based,metabolic abnormalities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要