Orbital Fulde-Ferrell Pairing State in Moiré Ising Superconductors.

Ying-Ming Xie, K T Law

Physical review letters(2023)

引用 1|浏览1
暂无评分
摘要
In this Letter, we study superconducting moiré homobilayer transition metal dichalcogenides where the Ising spin-orbit coupling (SOC) is much larger than the moiré bandwidth. We call such noncentrosymmetric superconductors, moiré Ising superconductors. Because of the large Ising SOC, the depairing effect caused by the Zeeman field is negligible and the in-plane upper critical field (B_{c2}) is determined by the orbital effects. This allows us to study the effect of large orbital fields. Interestingly, when the applied in-plane field is larger than the conventional orbital B_{c2}, a finite-momentum pairing phase would appear which we call the orbital Fulde-Ferrell (FF) state. In this state, the Cooper pairs acquire a net momentum of 2q_{B}, where 2q_{B}=eBd is the momentum shift caused by the magnetic field B and d denotes the layer separation. This orbital field-driven FF state is different from the conventional FF state driven by Zeeman effects in Rashba superconductors. Remarkably, we predict that the FF pairing would result in a giant superconducting diode effect under electric gating when layer asymmetry is induced. An upturn of the B_{c2} as the temperature is lowered, coupled with the giant superconducting diode effect, would allow the detection of the orbital FF state.
更多
查看译文
关键词
superconductors,fulde-ferrell
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要