Interpretable Graph Networks Formulate Universal Algebra Conjectures

NeurIPS(2023)

引用 0|浏览15
暂无评分
摘要
The rise of Artificial Intelligence (AI) recently empowered researchers to investigate hard mathematical problems which eluded traditional approaches for decades. Yet, the use of AI in Universal Algebra (UA) -- one of the fields laying the foundations of modern mathematics -- is still completely unexplored. This work proposes the first use of AI to investigate UA's conjectures with an equivalent equational and topological characterization. While topological representations would enable the analysis of such properties using graph neural networks, the limited transparency and brittle explainability of these models hinder their straightforward use to empirically validate existing conjectures or to formulate new ones. To bridge these gaps, we propose a general algorithm generating AI-ready datasets based on UA's conjectures, and introduce a novel neural layer to build fully interpretable graph networks. The results of our experiments demonstrate that interpretable graph networks: (i) enhance interpretability without sacrificing task accuracy, (ii) strongly generalize when predicting universal algebra's properties, (iii) generate simple explanations that empirically validate existing conjectures, and (iv) identify subgraphs suggesting the formulation of novel conjectures.
更多
查看译文
关键词
networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要