谷歌浏览器插件
订阅小程序
在清言上使用

Lack of GDF11 Does Not Ameliorate Erythropoiesis in β-Thalassemia and Does Not Prevent the Activity of the Trap-Ligand RAP-536

Blood(2018)

引用 0|浏览6
暂无评分
摘要
Mutations in the HBB gene causes β-thalassemia (BT). Treatment for BT presents a major clinical challenge in the United States, as patients require chronic and expensive treatment for survival. A new drug in Phase III clinical trials, Luspatercept (ACE-536), has been shown to improve BT symptoms via an erythropoietin (EPO) -independent pathway. ACE-536 is a peptide drug identical to the extracellular domain of activin receptor IIB (ACVR2B). Upon administration, it competes with ACVR2B to bind members of the transforming growth factor (TGF) β superfamily. Growth differentiation factor 11 (GDF11) has been pinpointed as the primary target by which the trap ligand exerts its therapeutic efforts. Studies in murine models of BT using RAP-536 (the mouse analog of ACE-536), have suggested that Gdf11 is overexpressed in erythroblasts and that overexpression functions to inhibit erythroid differentiation. Interestingly, however, ACE-536 and RAP-536 have been shown to stimulate RBC synthesis in healthy humans and mice, where GDF11/Gdf11 overexpression has not been reported. Additionally, the expression data in mice has been questioned because of the unavailability of antibodies that can discriminate between Gdf11 and other TGF-β ligands.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要