Gibbs Measures with Multilinear Forms
arXiv (Cornell University)(2023)
Abstract
In this paper, we study a class of multilinear Gibbs measures with Hamiltonian given by a generalized $\mathrm{U}$-statistic and with a general base measure. Expressing the asymptotic free energy as an optimization problem over a space of functions, we obtain necessary and sufficient conditions for replica-symmetry. Utilizing this, we obtain weak limits for a large class of statistics of interest, which includes the ''local fields/magnetization'', the Hamiltonian, the global magnetization, etc. An interesting consequence is a universal weak law for contrasts under replica symmetry, namely, $n^{-1}\sum_{i=1}^n c_i X_i\to 0$ weakly, if $\sum_{i=1}^n c_i=o(n)$. Our results yield a probabilistic interpretation for the optimizers arising out of the limiting free energy. We also prove the existence of a sharp phase transition point in terms of the temperature parameter, thereby generalizing existing results that were only known for quadratic Hamiltonians. As a by-product of our proof technique, we obtain exponential concentration bounds on local and global magnetizations, which are of independent interest.
MoreTranslated text
Key words
measures,forms
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
1971
被引用163 | 浏览
2018
被引用88 | 浏览
2019
被引用22 | 浏览
2020
被引用9 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话