Robust quantification of the burst of OH radicals generated by ambient particles in nascent cloud droplets using a direct-to-reagent approach

SCIENCE OF THE TOTAL ENVIRONMENT(2023)

引用 0|浏览1
暂无评分
摘要
Reactive oxygen species (ROS) play a central role in chemistry in cloud water, as well as in other aqueous phases such as lung fluid and in wastewater treatment. Recently, work simulating nascent cloud droplets showed that aerosol particles produce a large burst of OH radicals when they first take up water. This activity stops abruptly, within two minutes. The source of the OH radicals is not well understood, but it likely includes the aqueous phase chemistry of ROS and/or organic hydroperoxides and redox active metals such as iron and copper. ROS and their precursors are in general highly reactive and labile, and thus may not survive during traditional sampling methods, which typically involve multi-hour collection on a filter or direct sampling into water or another collection liquid. Further, these species may further decay during storage. Here, we develop a technique to grow aerosol particles into small droplets and capture the droplets directly into a vial containing the terephthalate probe in water, which immediately scavenges OH radicals produced by aerosol particles. The method uses a Liquid Spot Sampler. Extensive characterization of the approach reveals that the collection liquid picks up substantial OH/OH precursors from the gas phase. This issue is effectively addressed by adding an activated carbon denuder. We then compared OH formation measured with the direct-to-reagent approach vs. filter collection. We find that after a modest correction for OH formed in the collection liquid, the samples collected into the reagent produce about six times those collected on filters, for both PM2.5 and total suspended particulate. This highlights the need for direct-to-reagent measurement approaches to accurately quantify OH production from ambient aerosol particles.
更多
查看译文
关键词
Liquid spot sampler,OH burst,Online aerosol measurement,Cloud chemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要