Effects of pressure and temperature on topological electronic materials X2Y3 (X = As, Sb, Bi; Y = Se, Te) using first-principles

PHYSICAL CHEMISTRY CHEMICAL PHYSICS(2023)

引用 0|浏览1
暂无评分
摘要
We systematically study the thermal and topological properties of X2Y3 (X = As, Sb, Bi; Y = Se, Te) and the effects of pressure and temperature on their electronic properties using first-principles. We find that the external pressure-induced electronic topological transition occurs at about 5 GPa for Bi2Se3, and the type of band gap tends to become indirect with the increase of pressure. We also investigate the lattice expansion with temperature in quasi-harmonic approximation and further explore the effect of temperature on the volume, band gap, and volumetric thermal expansion coefficient of the studied selenides and tellurides. Finally, we calculate the evolution of the Wannier charge center of X2Y3 to determine their topological invariants, and theoretically suggest that Bi2Se3 changes from a topological to an ordinary insulator when the pressure decreases to -8 GPa; As2Se3 is found to be an ordinary insulator, while all other four compounds are always strong topological insulators at any pressure or temperature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要