Botox (onabotulinumtoxinA) mechanism of action

MEDICINE(2023)

引用 1|浏览0
暂无评分
摘要
Studies in the 1920s found that botulinum neurotoxin type A (BoNT/A) inhibited the activity of motor and parasympathetic nerve endings, confirmed several decades later to be due to decreased acetylcholine release. The 1970s were marked by studies of cellular mechanisms aided by use of neutralizing antibodies as pharmacologic tools: BoNT/A disappeared from accessibility to neutralizing antibodies within minutes, although it took several hours for onset of muscle weakness. The multi-step mechanism was experimentally confirmed and is now recognized to consist broadly of binding to nerve terminals, internalization, and lysis or cleavage of a protein (SNAP-25: synaptosomal associated protein-25 kDa) that is part of the SNARE (Soluble NSF Attachment protein REceptor) complex needed for synaptic vesicle docking and fusion. Clinical use of the BoNT/A product onabotulinumtoxinA was based on its ability to reduce muscle contractions via inhibition of acetylcholine from motor terminals. Sensory mechanisms of onabotulinumtoxinA have now been identified, supporting its successful treatment of chronic migraine and urgency in overactive bladder. Exploration into migraine mechanisms led to anatomical studies documenting pain fibers that send axons through sutures of the skull to outside the head-a potential route by which extracranial injections could affect intracranial processes. Several clinical studies have also identified benefits of onabotulinumtoxinA in major depression, which have been attributed to central responses induced by feedback from facial muscle and skin movement. Overall, the history of BoNT/A is distinguished by basic science studies that stimulated clinical use and, conversely, clinical observations that spurred basic research into novel mechanisms of action.
更多
查看译文
关键词
botox,onabotulinumtoxina,mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要