Repression of ferroptotic cell death by mitochondrial calcium signaling.

Research square(2023)

引用 0|浏览2
暂无评分
摘要
The uptake of Ca2+ into and extrusion of calcium from the mitochondrial matrix, regulated by the mitochondrial Ca2+ uniporter (MCU), is a fundamental biological process that has crucial impacts on cellular metabolism, signaling, growth and survival. Herein, we report that the embryonic lethality of Mcu-deficient mice is fully rescued by orally supplementing ferroptosis inhibitor lipophilic antioxidant vitamin E and ubiquinol. Mechanistically, we found MCU promotes acetyl-CoA-mediated GPX4 acetylation at K90 residue, and K90R mutation impaired the GPX4 enzymatic activity, a step that is crucial for ferroptosis. Structural analysis supports the possibility that GPX4 K90R mutation alters the conformational state of the molecule, resulting in disruption of a salt bridge formation with D23, which was confirmed by mutagenesis studies. Finally, we report that deletion of MCU in cancer cells caused a marked reduction in tumor growth in multiple cancer models. In summary, our study provides a first direct link between mitochondrial calcium level and sustained GPX4 enzymatic activity to regulate ferroptosis, which consequently protects cancer cells from ferroptosis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要