Deposition of Thin Electroconductive Layers of Tin (II) Sulfide on the Copper Surface Using the Hydrometallurgical Method: Electrical and Optical Studies

MATERIALS(2023)

引用 0|浏览0
暂无评分
摘要
Thin films of tin (II) sulfide (SnS) were deposited onto a 500 & mu;m thick copper substrate by a chemical bath method. The effect of sodium (Na) doping in these films was studied. The synthesis of the films was performed at temperatures of 60, 70, and 80 & DEG;C for 5 min. The microstructure of the SnS films analyzed by scanning electron microscopy (SEM) showed a compact morphology of the films deposited at 80 & DEG;C. The edges of the SnS grains were rounded off with the addition of a commercial surfactant. The thickness of different SnS layers deposited on the copper substrate was found to be 230 nm from spectroscopic ellipsometry and cross-section analysis using SEM. The deposition parameters such as temperature, surfactant addition, and sodium doping time did not affect the thickness of the layers. From the X-ray diffraction (XRD) analysis, the size of the SnS crystallites was found to be around 44 nm. Depending on the process conditions, Na doping affects the size of the crystallites in different ways. A study of the conductivity of SnS films provides a specific conductivity value of 0.3 S. The energy dispersive analysis of X-rays (EDAX) equipped with the SEM revealed the Sn:S stoichiometry of the film to be 1:1, which was confirmed by the X-ray photoelectron spectroscopy (XPS) analysis. The determined band-gap of SnS is equal to 1.27 eV and is in good agreement with the literature data.
更多
查看译文
关键词
copper surface,thin electroconductive layers,tin,sulfide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要