Optimal Superpositions for Particle Detection via Quantum Phase

Physical Review Research(2023)

引用 0|浏览11
暂无评分
摘要
Exploiting quantum mechanics for sensing offers unprecedented possibilities. State of the art proposals for novel quantum sensors often rely on the creation of large superpositions and generally detect a field. However, what is the optimal superposition size for detecting an incident particle (or an incident stream of particles) from a specific direction? This question is nontrivial as, in general, this incident particle will scatter off with varied momenta, imparting varied recoils to the sensor, resulting in decoherence rather than a well defined measurable phase. By considering scattering interactions of directional particulate environments with a system in a quantum superposition, we find that there is an "optimal superposition" size for measuring incoming particles via a relative phase. As a consequence of the anisotropy of the environment, we observe a novel feature in the limiting behaviour of the real and imaginary parts of the system's density matrix, linking the optimality of the superposition size to the wavelength of the scatterer.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要