Stratified Principal Component Analysis

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
This paper investigates a general family of models that stratifies the space of covariance matrices by eigenvalue multiplicity. This family, coined Stratified Principal Component Analysis (SPCA), includes in particular Probabilistic PCA (PPCA) models, where the noise component is assumed to be isotropic. We provide an explicit maximum likelihood and a geometric characterization relying on flag manifolds. A key outcome of this analysis is that PPCA's parsimony (with respect to the full covariance model) is due to the eigenvalue-equality constraint in the noise space and the subsequent inference of a multidimensional eigenspace. The sequential nature of flag manifolds enables to extend this constraint to the signal space and bring more parsimonious models. Moreover, the stratification and the induced partial order on SPCA yield efficient model selection heuristics. Experiments on simulated and real datasets substantiate the interest of equalising adjacent sample eigenvalues when the gaps are small and the number of samples is limited. They notably demonstrate that SPCA models achieve a better complexity/goodness-of-fit tradeoff than PPCA.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要