Variation Encoded Large-Scale Swarm Optimizers for Path Planning of Unmanned Aerial Vehicle

GECCO(2023)

引用 1|浏览8
暂无评分
摘要
Different from existing studies where low-dimensional optimizers are utilized to optimize the path of an unmanned aerial vehicle UAV), this paper attempts to employ large-scale swarm optimizers to solve the path planning problem of UAV, such that the path can be subtler and smoother. To this end, a variation encoding scheme is devised to encode particles. Specifically, each dimension of a particle is encoded by a triad consisting of the relative movements of UAV along the three coordinate axes. With this encoding scheme, a large number of anchor points can be optimized to form the path and repetitive anchor points can be avoided. Subsequently, this paper embeds this encoding scheme into four representative and well-performed large-scale swarm optimizers, namely the stochastic dominant learning swarm optimizer (SDLSO), the level-based learning swarm optimizer (LLSO), the competitive swarm optimizer (CSO), and the social learning particle swarm optimizer (SL-PSO), to optimize the path of UAV. Experiments have been conducted on 16 scenes with 4 different numbers of peaks in the landscapes. Experimental results have demonstrated that the devised encoding scheme is effective to cooperate with the four large-scale swarm optimizers to solve the path planning problem of UAV and SDLSO achieves the best performance.
更多
查看译文
关键词
Unmanned aerial vehicle,Path planning,Variation encoding,Large-scale swarm optimizers,Particle swarm optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要