Chrome Extension
WeChat Mini Program
Use on ChatGLM

Asynchronous Silent Programmable Matter: Line Formation

Lecture Notes in Computer Science Stabilization, Safety, and Security of Distributed Systems(2023)

University of Perugia

Cited 1|Views15
Abstract
Programmable Matter (PM) has been widely investigated in recent years. It refers to some kind of matter with the ability to change its physical properties (e.g., shape or color) in a programmable way. One reference model is certainly Amoebot, with its recent canonical version (DISC 2021). Along this line, with the aim of simplification and to better address concurrency, the SILBOT model has been introduced (AAMAS 2020), which heavily reduces the available capabilities of the particles composing the PM. In SILBOT, in fact, particles are asynchronous, without any direct means of communication (silent) and without memory of past events (oblivious). Within SILBOT, we consider the Line Formation primitive in which particles are required to end up in a configuration where they are all aligned and connected. We propose a simple and elegant distributed algorithm - optimal in terms of number of movements, along with its correctness proof.
More
Translated text
Key words
Programmable Matter
PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest