Overcoming the yield challenge of mussel foot proteins: Enhancing adhesion through metal ion-incorporated nanoparticles.

Nareshkumar Baskaran, Yu-Chen Wang, Rui-Jun Tan,Ren-Jei Chung,Yang Wei

Colloids and surfaces. B, Biointerfaces(2023)

引用 1|浏览1
暂无评分
摘要
Mussel foot proteins (MFPs) hold tremendous potential for various fields, but their low natural production yield presents a significant challenge for practical use. This study aims to explore possible solutions to overcome this limitation. While advanced recombinant technology can improve production efficiency, the resulting proteins lack the crucial chemical signature of mussel adhesion, 3,4-Dihydroxyphenylalanine (DOPA). Recent studies have shown that adhesives in nanoparticle form offer higher adhesion on solid surfaces, making them a promising alternative. Moreover, metal ions can enhance the cohesive forces between MFPs, leading to improved adhesion. In this study, we prepared MFP nanoparticles via spray-drying and tested their adhesion performance on surfaces with varying hydrophobicity using a universal testing machine. Our findings confirmed that MFP nanoparticles exhibit stronger adhesive performance than native MFPs, with metal ions contributing to even more robust adhesion. This study offers valuable insights into the adhesive behavior of MFPs in nanoparticle form with metal ions, presenting a potential solution to the challenge of low natural production yield of MFPs and the possibility of enhancing their adhesion properties in bio-adhesive materials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要