Role of Nano-Fe3O4 for enhancing nitrate removal in microbial electrolytic cells: Characterizations and microbial patterns of cathodic biofilm

Chemosphere(2023)

引用 0|浏览1
暂无评分
摘要
Conductive magnetite nanoparticle (Nano-Fe3O4) can facilitate numerous biological reduction reactions as an outstanding electron mediator for electron transfer. The positive role of Nano-Fe3O4 for nitrate removal has gradually gained attention recent years, however, it has not been clarified for the persistence of the promoting effect under different concentrations addition. Performance of nitrogen removal and characteristics of cathodic biofilm were evaluated in this study after Nano-Fe3O4 addition with gradient concentration of 100∼500 mg L−1 in microbial electrolytic cells (MEC). Our study illustrated that the optimal concentration was 200 mg L−1 as the removal rate of nitrate increased by 24.76% and the removal rate of total dissolved nitrogen by 29.72%. At the optimal concentration, Nano-Fe3O4 increased cathodic biofilm DNA concentration by 61.04%, enhanced electron transport system activity, enriched iron redox bacteria, denitrifying bacteria and genes, as well as increased extracellular polymeric substances (EPS) amount, especially the protein content of soluble-EPS. However, promoting effect on nitrate removal was not visible in high concentration (500 mg L−1) addition, its electron transport system activity and EPS content were even declined. XPS results indicated that high concentration of Nano-Fe3O4 may reduce the availability of electrons to cathodic biofilm by competing for electrons, which inhibit nitrate removal.
更多
查看译文
关键词
Nano-Fe3O4,Nitrate removal,Microbial electrolytic cells,Cathodic biofilm,Extracellular polymeric substances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要