The correlated insulators of magic angle twisted bilayer graphene at zero and one quantum of magnetic flux: a tight-binding study

arXiv (Cornell University)(2023)

引用 0|浏览6
暂无评分
摘要
Magic angle twisted bilayer graphene (MATBG) has become one of the prominent topics in Condensed Matter during the last few years, however, fully atomistic studies of the interacting physics are missing. In this work, we study the correlated insulator states of MATBG in the setting of a tight-binding model, under a perpendicular magnetic field of $0$ and $26.5$ T, corresponding to zero and one quantum of magnetic flux per unit cell. At zero field and for dopings of two holes ($\nu=-2$) or two electrons ($\nu=+2$) per unit cell, the Kramers intervalley coherent (KIVC) order is the ground state at the Hartree-Fock level, although it is stabilized by a different mechanism to that in continuum model. At charge neutrality, the spin polarized state is competitive with the KIVC due to the on-site Hubbard energy. We obtain a strongly electron-hole asymmetric phase diagram with robust insulators for electron filling and metals for negative filling. In the presence of magnetic flux, we predict an insulator with Chern number $-2$ for $\nu=-2$, a spin polarized state at charge neutrality and competing insulators with Chern numbers $+2$ and $0$ at $\nu=+2$. The stability of the $\nu=+2$ insulators is determined by the screening environment, allowing for the possibility of observing a topological phase transition.
更多
查看译文
关键词
bilayer graphene,insulators,tight-binding
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要