miR-147b is an oncomiR acting synergistically with HIPK2 to promote pancreatic carcinogenesis.

Cellular signalling(2023)

引用 0|浏览4
暂无评分
摘要
MicroRNAs (miRs, miRNAs) are known players in the regulatory network of pancreatic tumorigenesis, but the downstream effectors remain poorly characterized. This study addressed this issue based on in silico prediction, in vitro experiments, and in vivo validation. The differentially expressed PCa-related miRNAs and bioinformatics tools predicted downstream regulators. The expression of miR-147b was examined in PCa cell lines. Putative targets of miR-147b were predicted by a publicly available database and confirmed by luciferase activity assay. Mimic/inhibitor, siRNA/overexpression plasmid, or pifithrin-α (p53 inhibitor) were delivered into PCa cells to assess the effect of miR-147b, HIPK2, and p53 on malignant phenotypes of PCa cells. AntagomiR-147b and shRNA targeting HIPK2 were introduced to xenograft-bearing nude mice for in vivo experiments. The expression of miR-147b was significantly increased in PCa cell lines. Ectopic expression of miR-147b promoted the malignant phenotypes of PCa cells and inhibited their apoptosis. HIPK2 was confirmed as a target gene of miR-147b. Inhibiting miR-147b could promote HIPK2 expression and potentially activate the p53 pathway, inhibiting PCa cell growth. In vivo experiments suggested that miR-147b inhibition suppressed the growth of xenograft tumors in nude mice, while HIPK2 knockdown counteracted its effect. Collectively, our work reveals a novel miR-147b-mediated carcinogenic regulatory network in PCa that may be a viable target for PCa treatment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要