谷歌浏览器插件
订阅小程序
在清言上使用

Enhancing Photocatalytic Overall Water-Splitting Performance on Dual-Active-sites of the Co-P@MoS2 Catalysts: a DFT Study.

Physical chemistry chemical physics/PCCP Physical chemistry chemical physics(2023)

引用 0|浏览19
暂无评分
摘要
The rational construction of photocatalysts possesses tremendous potential to solve the energy crisis and environmental pollution; however, designing a catalyst for solar-driven overall water-splitting remains a great challenge. Herein, we propose a new MoS2-based photocatalyst (Co-P@MoS2), which skillfully uses the cobalt (Co) atom to stimulate in-plane S atoms and employs the phosphorus (P) atom to stabilize the basal plane by forming the Co-P bands. Using density functional theory (DFT), it was found that oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) can occur at the P site and S2 site of the Co-P@MoS2, respectively, and the dual-active sites successfully makes a delicate balance between the adsorption and dissociation of hydrogen. Furthermore, the improved overall water-splitting performance of Co-P@MoS2 was verified by analyzing the results of the electron structure and the dynamics of photogenerated carries. It was found that the imbalance of electron transfer caused by the introduction of the Co atom was the main contributor to the catalytic activity of Co-P@MoS2. Our study broadens the idea of developing photocatalysts for the overall water-splitting.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要