谷歌浏览器插件
订阅小程序
在清言上使用

Enhancement of the Catalytic Effect on the Electrochemical Conversion of CO2 to Formic Acid Using MXene (Ti3c2tx)-Modified Boron-Doped Diamond Electrode

ENERGIES(2023)

引用 1|浏览11
暂无评分
摘要
The rising concentration of carbon dioxide (CO2) as one of the greenhouse gases in the atmosphere is a major source of worry. Electrochemical reduction of CO2 is one of many ways to convert CO2 gas into usable compounds. An electrochemical technique was applied in this study to reduce CO2 using a boron-doped diamond (BDD) working electrode modified with MXene (Ti3C2Tx) material to improve electrode performance. MXene concentrations of 0.5 mg/mL (MXene-BDD 0.5), 1.0 mg/mL (MXene-BDD 1.0), and 2.0 mg/mL (MXene-BDD 2.0) were drop-casted onto the BDD surface. MXene was effectively deposited on top of the BDD surface, with Ti weight loads of 0.12%, 4.06%, and 7.14% on MXene-BDD 0.5, MXene-BDD 1.0, and MXene-BDD 2.0, respectively. The modified working electrode was employed for CO2 electroreduction with optimal CO2 gas aeration. The existence of the MXene substance in BDD reduced the electroreduction overpotential of CO2. For the final result, we found that the MXene-BDD 2.0 electrode effectively generated the most formic acid product with a maximum reduction potential as low as −1.3 V (vs. Ag/AgCl).
更多
查看译文
关键词
MXene,boron-doped diamond,CO2 reduction,climate action
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要