Skeletal muscle endurance declines with impaired mitochondrial respiration and inadequate supply of acetyl-CoA during muscle fatigue in 5/6 nephrectomized rats.

Journal of applied physiology (Bethesda, Md. : 1985)(2023)

引用 0|浏览20
暂无评分
摘要
Chronic kidney disease (CKD)-related cachexia increases the risks of reduced physical activity and mortality. However, the physiological phenotype of skeletal muscle fatigue and changes in intramuscular metabolites during muscle fatigue in CKD-related cachexia remain unclear. In the present study, we performed detailed muscle physiological evaluation, analysis of mitochondrial function, and comprehensive analysis of metabolic changes before and after muscle fatigue in a 5/6 nephrectomized rat model of CKD. Wistar rats were randomized to a sham-operation (Sham) group that served as a control group or a 5/6 nephrectomy (Nx) group. Eight weeks after the operation, torque and force measurements in plantar flexor muscles in Nx rats using electrical stimulation revealed a significant decrease in muscle endurance during subacute phase related to mitochondrial function. Muscle mass was reduced without changes in the proportions of fiber type-specific myosin heavy chain isoforms in Nx rats. Pyruvate-malate-driven state 3 respiration in isolated mitochondria were impaired in Nx rats. Protein expression levels of mitochondrial respiratory chain complexes III and V were decreased in Nx rats. Metabolome analysis revealed that the increased supply of acetyl CoA in response to fatigue was blunted in Nx rats. These findings suggest that CKD deteriorates skeletal muscle endurance in association with mitochondrial dysfunction and inadequate supply of acetyl-CoA during muscle fatigue.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要