New insight into the removal process of benzotriazole UV stabilizers by UV/H2O2: Integrating quantum chemical calculation with CFD simulation

Journal of hazardous materials(2023)

引用 0|浏览15
暂无评分
摘要
Benzotriazole UV stabilizers (BT-UVs) are important UV absorbers. As high-production chemicals and potential hazards, their ubiquitous presence in aquatic environments is of greatly pressing concern. Herein, the removal of six typical BT-UVs by UV/H2O2 was comprehensively investigated by quantum chemistry calculation integrated with CFD simulation. Utilizing such a micro and macro incorporated model in treating contaminants is the first report. From the micro-view, degradation mechanisms of BT-UVs by •OH oxidation were determined, and corresponding rate constants were obtained with values of 109∼1010 M−1s−1. In a macroscopic aspect, combining the established kinetic model and CFD simulation, the effects of UV lamp power (P), volumetric flow rate (Qv), and H2O2 dosage ([H2O2]0) on removal yields of BT-UVs were expounded, increasing P or [H2O2]0 or decreasing Qv are effective in improving removal yields of BT-UVs, but the enhancement was abated when P or [H2O2]0 increased to a certain level. When [H2O2]0 is 5 mg/L and Qv is decreased from 0.1 to 0.05 m3/h, the removal yields of BT-UVs could achieve more than 95% (P = 150 W) and 99% (P = 250 W), respectively. This work provides a new interdisciplinary insight for investigating organic contaminant removal in potential industrial applications of UV/H2O2 systems.
更多
查看译文
关键词
benzotriazole uv stabilizers,quantum chemical calculation,removal process
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要