A novel approach to measure carbonate alkalinity in aqueous solutions using a total organic carbon analyzer.

The Science of the total environment(2023)

引用 0|浏览6
暂无评分
摘要
Carbonate alkalinity is crucial in regulating the pH and buffering capacity of natural water systems. Thus, its accurate measurement is essential to understand various water environments that affect water quality and ecosystem health. However, conventional potentiometric titration has some limitations. It results in inaccurate measurements of carbonate alkalinity when the alkalinity levels are low or when high dissolved organic matter or inorganic ion levels exist. Herein, we propose a novel approach to accurately measure carbonate alkalinity using a total organic carbon (TOC) analyzer. An extensive study comparing the accuracy and reliability of the conventional potentiometric titration method with those of the newly developed TOC method was conducted to develop and verify highly accurate measurements of carbonate alkalinity. The TOC method has several advantages over the conventional potentiometric titration methods, such as its ability to accurately measure carbonate alkalinity in the presence of high dissolved organic matter or inorganic ion levels and its ability to provide rapid and automated measurements with high reproducibility. Because, the limit of detection, limit of quantification, and the variation coefficient of the measurements was 0.016 mM (0.2 mgC/L), 0.050 mM (0.6 mgC/L), and 3.68 % respectively. Thus, the development of a novel TOC method has significant environmental implications as it provides a reliable and accurate means to measure carbonate alkalinity in solutions containing various organic matter types.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要